802 research outputs found

    HI and Hot Gas in the Outskirts of the M81 Group

    Full text link
    Results are presented from a wide area, high resolution HI synthesis survey of the outer regions of the nearby M81 group, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail. The survey encompasses the star forming dwarf galaxies M81dwA, UGC4483, and HoII, where evidence of ram pressure stripping was recently discovered. The data do not reveal any intergalactic HI, but the outer parts of HoII are reminiscent of tidal tails. We argue however that those structures are equally consistent with the latest ram pressure models including cooling. The case for a hot intergalactic medium in this poor, spiral-only group is thus still open. The survey also puts tight constraints on possible counterparts to the local high velocity cloud population in an external group, reaching a 3 sigma column density of 10^19 atom/cm^2 and a 6 sigma limiting mass of 1.5x10^5 M_sun.Comment: 6 pages, 3 figures, to be published in "Recycling Intergalactic and Interstellar Matter," eds. P.-A. Duc, J. Braine, & E. Brinks (ASP: San Francisco

    Discovery of a Small Central Disk of CO and HI in the Merger Remnant NGC 34

    Get PDF
    We present CO(1-0) and HI(21-cm) observations of the central region of the wet merger remnant NGC 34. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations detect a regularly rotating disk in CO with a diameter of 2.1 kpc and a total molecular hydrogen mass of (2.1±0.2)×109 M⊙2.1 \pm 0.2) \times10^9~M_\odot. The rotation curve of this gas disk rises steeply, reaching maximum velocities at 1" (410 pc) from the center. Interestingly, HI observations done with the Karl G. Jansky Very Large Array show that the absorption against the central continuum has the exact same velocity range as the CO in emission. This strongly suggests that the absorbing HI also lies within 1" from the center, is mixed in and corotates with the molecular gas. A comparison of HI absorption profiles taken at different resolutions (5"-45") shows that the spectra at lower resolutions are less deep at the systemic velocity. This provides evidence for HI emission in the larger beams, covering the region from 1 kpc to 9 kpc from the center. The central rapidly rotating disk was likely formed either during the merger or from fall-back material. Lastly, the radio continuum flux of the central source at mm wavelengths (5.4±1.85.4\pm1.8 mJy) is significantly higher than expected from an extrapolation of the synchrotron spectrum, indicating the contribution of thermal free-free emission from the central starburst.Comment: Accepted for publication in A

    An HI survey of the Bootes Void. II. The Analysis

    Get PDF
    We discuss the results of a VLA HI survey of the Bootes void and compare the distribution and HI properties of the void galaxies to those of galaxies found in a survey of regions of mean cosmic density. The Bootes survey covers 1100 Mpc3^{3}, or ∼\sim 1\% of the volume of the void and consists of 24 cubes of typically 2 Mpc * 2 Mpc * 1280 km/s, centered on optically known galaxies. Sixteen targets were detected in HI; 18 previously uncataloged objects were discovered directly in HI. The control sample consists of 12 cubes centered on IRAS selected galaxies with FIR luminosities similar to those of the Bootes targets and located in regions of 1 to 2 times the cosmic mean density. In addition to the 12 targets 29 companions were detected in HI. We find that the number of galaxies within 1 Mpc of the targets is the same to within a factor of two for void and control samples, and thus that the small scale clustering of galaxies is the same in regions that differ by a factor of ∼\sim 6 in density on larger scales. A dynamical analysis of the galaxies in the void suggests that on scales of a few Mpc the galaxies are gravitationally bound, forming interacting galaxy pairs, loose pairs and loose groups. One group is compact enough to qualify as a Hickson compact group. The galaxies found in the void are mostly late-type, gas rich systems. A careful scrutiny of their HI and optical properties shows them to be very similar to field galaxies of the same morphological type. This, combined with our finding that the small scale clustering of the galaxies in the void is the same as in the field, suggests that it is the near environment that mostly affects the evolution of galaxies.Comment: Latex file of abstract. The postscript version of the complete paper (0.2 Mb in gzipped format) including all the figures can be retrieved from http://www.astro.rug.nl:80/~secr/ To appear in the February 1996 issue of the Astronomical Journa

    The HI Environment of Nearby Lyman-alpha Absorbers

    Get PDF
    We present the results of a VLA and WSRT search for HI emission from the vicinity of seven nearby clouds, which were observed in Lya absorption with HST toward Mrk335, Mrk501 and PKS2155-304. We searched a volume of 40' x 40' x 1000 km/s. The HI mass sensitivity (5 sigma) varies from 5x10^6 to 5x10^8 Msun. We detected HI emission in the vicinity of four out of seven absorbers. The closest galaxy is a small dwarf galaxy at a projected distance of 68/h kpc from the sight line toward Mrk335. It has the same velocity (V=1970 km/s) as one of the absorbers, and has an HI mass of only 4x10^7 Msun. We found a more luminous galaxy at the velocity (V=5100 km/s) of one of the absorbers toward PKS2155-304, 230/h kpc from the sight line. Two other, stronger absorbers toward PKS2155-304 at V=17,000 km/s are associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600/h kpc. These results support the conclusion that most nearby Lya forest clouds trace the large-scale structures outlined by optically luminous galaxies. We do not find any evidence for a physical association between an absorber and its closest galaxy.Comment: 4 Tables, 11 Figures, to be published in Astron J. (Oct 1996) Vol 11
    • …
    corecore